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Coherent Risk Measures

Coherence

Coherent risk measure
Consider two random variables X and Y . A risk measure ρ is said
to be coherent (Delbaen, 2002) if

• (Addition of capital) For all a ∈ R, ρ(X + a) = ρ(X )− a;

• (Diversification principle) ρ(X + Y ) ≤ ρ(X ) + ρ(Y );

• (Proportional risk) For all t ≥ 0, ρ(tX ) = tρ(X );

• (Sure gain) If X ≥ 0, then ρ(X ) ≤ 0.

Variance and value-at-risk (Artzner et al., 1999) are not coherent
risk measures.
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Coherent Risk Measures

Quantile-based risk measures

Many coherent risk measures are proposed in the literature, such
as the conditional value-at-risk (Rockafellar and Uryasev, 2002)
and expected-shortfall (Acerbi and Tasche, 2002).

We focus on the coherent risk measure based on the α-quantile qα

ρα(X ) = −1
α

(E [X1(X ≤ qα(X ))] + qα(X ) (α− P [X ≤ qα(X )]))

= −1
α

∫ α

0
qu(X )du.

If the random variable X is continuous, then ρα is equivalent to
the expected-shortfall.
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Multiperiod Portfolio Optimization Problem

Illustration of the problem

X0 E[XT ]

Timeπ1

H0

ρ(XT )

Xt1 Xt2

π2 π3

Ht1

Ht2

Invest our initial wealth and control the expected terminal wealth;

Minimize a coherent risk measure;

Adjust our strategy according to market fluctuations.
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Multiperiod Portfolio Optimization Problem

Why consider a binomial model?

• Discrete-time models are easier to handle.

• We can condition on specific wealth values since random
variables only take a finite number of values.

• Binomial models can be generalized (e.g. trinomial model,
multinomial model, etc.).

Under some assumptions, the binomial model provides a
discrete-time approximation of the Black-Scholes model (Kim
et al., 2016).
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Multiperiod Portfolio Optimization Problem

Parameters of the problem
We suppose that the interest rate of the riskless asset r ≡ 0
w.l.o.g., which means all rates of return are discounted.

• Initial wealth: X0

• Wealth at the end of period i : Xi

• Expected terminal wealth: X∗

• Wealth amount invested in the risky asset at the beginning of
period i : πi

• Rate of return of the risky asset at the end of the period i : Ri

• Probability of a high-reward rate of return: p
• High-reward and low-reward rates of returns: U and L

• Threshold for the risk measure: α

• Number of periods: n
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Multiperiod Portfolio Optimization Problem

Portfolio optimization problem with a binomial model

Definition of the problem

min
π

ρα(Xn) s.t. E[Xn] = X ∗.

• Self-financing constraint:

Xn = Xn−1(1 + r) + πn(Rn − r) = X0 +
n∑

i=1
πiRi .

• One risky asset with independent rates of return over each
period:

Ri =
{

U with probability p
L with probability 1− p

, ∀i = 1, . . . , n.

• U, L and p are chosen such that U > 0, L < 0 and E[Ri ] > 0.
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Multiperiod Portfolio Optimization Problem

Portfolio optimization problem with a binomial model
π1 is a constant and πi , i = 2, . . . , n are random variables. Thus
there are 2n possible terminal wealth values:
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Multiperiod Portfolio Optimization Problem

Where to look for the global minimum?

Proposition
The following risk measure is a convex function :

ρα(X ) = −1
α

(E [X1(X ≤ qα(X ))] + qα(X ) (α− P [X ≤ qα(X )]))

= −1
α

∫ α

0
qu(X )du.

The solution of this convex optimization problem is on the
boundaries. The global minimum is necessarily obtain when the
random variable Xn takes two unique values.
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Multiperiod Portfolio Optimization Problem

Where to look for the global minimum?

• Partition possible terminal wealth values into two groups;
• Solve both linear systems such that every wealth values in a
group is equal;
• Compute ρα with these terminal wealth values.

Number of different combinations

2n−1−1∑
k=1

(
2n

k

)
+ 1

2

(
2n

2n−1

)
= 22n−1 − 1.

Stochastic search algorithms are essential to avoid enumerating
each and every possible partitioning.

(226−1 − 1 ≈ 9.2× 1018 partitions...)

13



Stochastic search algorithms

• Coherent risk measures

• Multiperiod portfolio optimization problem

• Stochastic search algorithms

• Performance of search methods

14



Stochastic Search Algorithms

Discrete uniform search algorithm (without replacement)

Input: Initialization of parameters ;
1 Initialize the number of iterations ;
2 Generate a discrete uniform without replacement sequence of integers;
3 Set the minimum risk measure to infinity ;
4 for ii = 1 to the number of iterations do
5 Select the ii-th partitioning ;
6 Compute its associated risk measure ;
7 if it improves the minimum risk measure then
8 Update the minimum risk measure found ;

Output: The minimum risk measure and its associated partitioning ;
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Stochastic Search Algorithms

Discrete uniform search algorithm (without replacement)

• This algorithm is efficient on average to find the global
minimum, indeed

E[Nbr. of iterations to find global minimum] = 22n−2.

• It cannot visit the same combination twice.

• A big amount of memory space is required when the number
of periods n grows. Its realization with n ≥ 6 periods is
almost impracticable on a single computer.

We then propose a stochastic algorithm that takes advantage of
the structure of the problem and the binomial model.
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Stochastic Search Algorithms

Markovian change-when-improve algorithm

Input: Initialization of the number of iterations and parameters ;
1 Select randomly a partitioning ;
2 Compute its associated risk measure ;
3 Create a memory variable ;
4 for ii = 2 to the number of iterations do
5 Select a label and remove it from the memory variable ;
6 Change partitioning by switching group this label ;
7 Compute the new associated risk measure ;
8 if it improves the minimum risk measure then
9 Update the minimum risk measure found ;

10 if it improves the risk measure compared to last iteration then
11 Update partitioning and memory variable ;
12 else if the memory variable is empty then
13 Reinitialize partitioning and the memory variable ;
14 Compute its associated risk measure ;

Output: The minimum risk measure and its associated partitioning ;
17



Stochastic Search Algorithms

Markovian change-when-improve algorithm

• It takes advantage of the structure of the problem.

• The Markovian change-when-improve search keeps track of at
most the last 2n combinations seen, which is less problematic
when n grows.

• This algorithm changes partitioning only when there is an
improvement of the cost function.

Next slides illustrate the different steps and variables states of the
Markovian change-when-improve algorithm for a portfolio
optimization problem with n = 3 periods.
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Stochastic Search Algorithms

Markovian change-when-improve - Illustration

P1 (1st partition) [1 3]

P2 (2nd partition) [2 4 5 6 7 8]

P1Temp

P2Temp

FctTemp (ρα) -0.2471

Memory [1 2 3 4 5 6 7 8]

FctLast (ρα)
-0.2471

FctMin (ρα)
-0.2471

CombinMin
[1 3]

Global minimum
-0.8595

Initialize combinations
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Stochastic Search Algorithms

Markovian change-when-improve - Illustration
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Performance of Search Methods

Performance of search methods

Comparison of the uniform without replacement (Unif w/o)
and Markovian change-when-improve (MCWI) algorithms

• Number of iterations to find the global minimum

• Minimum found after a fixed number of iterations

Here are the parameters of the problem with the same notation as
specified earlier.
• Initial wealth: X0 = 1
• Expected terminal wealth: X∗ = 6/5
• Probability of a high-reward rate of return: p = 0.75
• High-reward rate of return: U = 1
• Low-reward rate of return: L = −2
• Threshold for the risk measure: α = 0.3
• Number of periods: n
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Performance of Search Methods

Number of iterations to find the global minimum

222−1 − 1 = 7

Uniform w/o replace
search expectation :

4 iterations

MCWI search esti-
mated expectation :

8.60 iterations

Mean = 8.60
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Estimation with 10000 replications
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Figure: Distribution of the number of iterations
to find the global minimum - MCWI 2 periods
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Performance of Search Methods

Number of iterations to find the global minimum

223−1 − 1 = 127

Uniform w/o replace
search expectation :

64 iterations

MCWI search esti-
mated expectation :

25.79 iterations

Mean = 25.79
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Figure: Distribution of the number of iterations
to find the global minimum - MCWI 3 periods
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Performance of Search Methods

Number of iterations to find the global minimum

224−1 − 1 = 32 767

Uniform w/o replace
search expectation :

16 384 iterations

MCWI search esti-
mated expectation :

98.53 iterations

Mean = 98.53
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Figure: Distribution of the number of iterations
to find the global minimum - MCWI 4 periods
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Performance of Search Methods

Number of iterations to find the global minimum

225−1 − 1 ≈ 2×109

Uniform w/o replace
search expectation :

≈ 1×109 iterations

MCWI search esti-
mated expectation :

294.53 iterations

Mean = 294.53
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Figure: Distribution of the number of iterations
to find the global minimum - MCWI 5 periods
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Performance of Search Methods

Minimum found after a fixed number of iterations

Best of 4 iterations

Uniform w/o replace
search replications
that found the
global minimum :

57.07%

MCWI search repli-
cations that found
the global minimum:

48.22%
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MCWI > Unif : 0.275

Figure: Distribution of the minimum values
found by both algorithms - 2 periods
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Performance of Search Methods

Uniform (w/o replace) vs. Markovian CWI

Figure: Proportion of 10000 replications that found the global minimum
for both methods - 2 periods
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Performance of Search Methods

Minimum found after a fixed number of iterations

Best of 65 iterations

Uniform w/o replace
search replications
that found the
global minimum :
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cations that found
the global minimum:

95.23%
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Figure: Distribution of the minimum values
found by both algorithms - 3 periods
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Performance of Search Methods

Uniform (w/o replace) vs. Markovian CWI

Figure: Proportion of 10000 replications that found the global minimum
for both methods - 3 periods
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Performance of Search Methods

Minimum found after a fixed number of iterations

Best of 150
iterations

Uniform w/o replace
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global minimum :
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Figure: Distribution of the minimum values
found by both algorithms - 4 periods
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Performance of Search Methods

Uniform (w/o replace) vs. Markovian CWI

Figure: Proportion of 5000 replications that found the global minimum
for both methods - 4 periods
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Conclusion

• Stochastic algorithms provide efficient procedures to find
optimal (or near-optimal) solutions to optimization problems.

• Using the structure of the problem improves significantly the
efficiency of search algorithms in multiperiod portfolio
optimization problems.

• It could provide some insights on the potential optimal
strategy in the continuous case with models such as the
Black-Scholes model.
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