Reinforcement Learning for

Dynamic Convex Risk Measures

Anthony Coache  Sebastian Jaimungal

anthonycoache.ca
sebastian.statistics.utoronto.ca

Department of Statistical Sciences
University of Toronto

SIAM Conference on Financial Mathematics and Engineering x June 1-4, 2021

i NSERE Fonds de recherche
W UNIVERSITY OF Nature

te:hnologles

® TORONTO CRSNG Québec


anthonycoache.ca
sebastian.statistics.utoronto.ca

Background

Reinforcement Learning (RL)

Markov Decision Process (MDP) M := (S, A, m, P, ¢,7)

e S — State space
e A — Action space

7% (a|s) — Policy characterized by 8

P(s1), P(s'|s,a) — Transition probability distribution

¢(s,a) € C — State-action dependent cost function

~ € (0,1) — Discount factor
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e S — State space
e A — Action space

7% (a|s) — Policy characterized by 8

P(s1), P(s'|s,a) — Transition probability distribution

¢(s,a) € C — State-action dependent cost function

~ € (0,1) — Discount factor

Standard RL: risk-neutral objective function of a cost

min E [Z].
0

Risk-sensitive RL: risk measure p of the cost Z

min p(Z) or min E[Z] subj.to p(Z) < Z".
0 0
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Background

Risk-aware RL: applying risk measures recursively [e.g. Rus10; CZ14], or applying a
static risk measure [e.g. NBP19; BG20]

e Offers a remedy to environment uncertainty
e Provides strategies that are more robust

e Tuned to agent'’s risk preference
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Risk-aware RL: applying risk measures recursively [e.g. Rus10; CZ14], or applying a
static risk measure [e.g. NBP19; BG20]

o Offers a remedy to environment uncertainty
e Provides strategies that are more robust

e Tuned to agent’s risk preference

[TCGM15] provide policy search algorithms in both the static and dynamic framework,
but some potential shortcomings remain:

e Studies stationary policies

e Restricted to coherent risk measures

We develop a generalized, practical setting to solve a wider class of RL problems
e Considers finite-horizon problems and non-stationary policies

e Extended to convex risk measures
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Background

p:Z2—=Ris
e monotone: Zy < Zy implies p(Z1) <

2)

p(Z

e translation invariant: p(Z +m) = p(Z) + m, Ym € R
e positive homogeneous: p(8Z) = Bp(Z), VB > 0
e subadditive: p(Z1 + Z2) < p(Z1) + p(Z2)

® convex: p()\Zl + (1 = )\)ZQ) S )\p(Zl) + (1 = )\)p(ZQ)
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e monotone: Zy < Zy implies p(Z1) <

2)

p(Z
e translation invariant: p(Z + m) = p(Z) + m, Ym € R
e positive homogeneous: p(8Z) = Bp(Z), VB > 0
Z5)

o convex: p(AZ1 + (1 = N)Z2) < Ap(Z1) + (1 — N)p(Z2)

o subadditive: p(Z, + Z2) < p(Z1) + p(

Coherent p [ADEH99]

Monotone, translation invariant, positive homogeneous and subadditive

Convex p [FS02]

Monotone, translation invariant and convex
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Background

Dual Representation

Representation Theorem [SDR14]
Let E¢[Z] = fﬂ Z(w)é(w)dP(w) and p* be a convex penalty.

If a risk measure p |s convex, proper and lower semicontinuous, then there exists
Uc{&:y &w ) =1, £ >0} such that

p(Z)= sup {ES[Z]-p*(&)}.
EEU(P)

Moreover, p coherent iff. p(Z) = supecy(p) {IE5 [Z]}
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Let E¢[Z] = fﬂ Z(w)é(w)dP(w) and p* be a convex penalty.

If a risk measure p |s convex, proper and lower semicontinuous, then there exists

Uc{&:y Ew ) =1, £ >0} such that
p(Z)= sup {E°[Z]-p"(&)}.
g€U(P)

Moreover, p coherent iff. p(Z) = supecy(p) {IE5 [Z]}

We assume the risk envelope U is of the form [TCGM15]

U(P) = 525 w)=1,6>0, g6, P) =0,Ve € €, fi6, P)<O,VieT

affine fcts w.r.t. & convex fcts w.r.t. &
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Background

Dynamic Risk Measures

Consider
e (Q,F, P) — Probability space
e Fi C...C Fr — Filtration
o Z, = L,(Q,F:, P) — p-integrable random variables
o Zir =24 X - Zr

Dynamic risk measure {p; 7}

Sequence of py, 1 : Zi7 — Z¢ where py7(2) < pro(W), VZ <W
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Background

Dynamic Risk Measures

Consider
e (0, F, P) — Probability space
e Fi C...C Fr — Filtration
o Z, = L,(Q,F:, P) — p-integrable random variables
o Zir =24 X - Zr

Dynamic risk measure {p; 7}

Sequence of py, 1 : Zi7 — Z¢ where py7(2) < pro(W), VZ <W

Time-consistency [Rus10]

{pt,r}+ is time-consistent iff. forany 1 <t1 < t2 < T, and any Z,W € Z;, 1, we have
ptz,T(th» ey ZT) < pt2,T(Wt2, ey WT) and 7, = Wk, Vk = t1,...,t2

implies that py, 7(Zs,, ..., Z7) < pty, oWy, ..., Wr).
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Background

Dynamic Risk Measures

One-step conditional risk measure p;

Risk measure p; : 24411 — Z; such that pi(Zit1) = pe,e+1(0, Zir).

Suppose a time-consistent {p; 1} satisfies
o pi1(Zt, Zss1,..., Zr) = Zt + pt,7(0, Zt 1, ..., Z1)
e pi,7(0)=0
® i t.(LaZ) =1 ap, 1,(Z2), VA € Fyy
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Background

Dynamic Risk Measures

One-step conditional risk measure p;

Risk measure pt - Zt+1 — Z; such that Pt (Zt+1) = pt,t+1(07 Zt+1).

Suppose a time-consistent {p; 1} satisfies
o pe17(Zt, Zis1,.. . Zr) = Zt + pt,7(0, Zes1, ..., Z1)
e py,7(0) =0
o pi4,(1aZ) =1aps, 1.(2Z), VA E F,

Then [Rus10] we have

oe,7(Zty .. Zr) = Zie + pi (Zeg1 + pis1 (Zeg2 + -+ pr (Z1) -+ )

Additional assumed properties for p;:
e Axioms of convex risk measures

e Markovian, i.e. not allowed to depend on the whole past
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Dynamic Policy Gradient
Problem Setup

Problems of the form ming p1,741(Z) induced by 7?, i.e.

mein c(s1,a1) + yp1 (e(s2,a2) + -« +vypr—1 (c(sT,ar) + vpr (c(sT41)) - -+))
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Dynamic Policy Gradient
Problem Setup

Problems of the form min, p1,741(Z) induced by 7?, i.e

mein c(s1,a1) + yp1 (e(s2,a2) + -« +vypr—1 (c(sT,ar) + vpr (c(sT41)) - -+))

Using the dual representation and recursive equations, we have

Vri1(s) = eria(s),

Vi(s) = et (s) + max E* [Vt+1(sf+1) —p (f)} )
t-/—’f - EEU(s, Py (+|st=5))
cos’ or present state

risk for next state

forseSandt=1T,...,1, where
e cf(s)=3, ci(s,a)n’(als; = s) — Cost of x’
o Py(s'|st =) =), P(s'|s,a)n’(a|s: = s) — Transition probability induced by 7°
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Dynamic Policy Gradient

Problem Setup

e We wish to optimize the value function over policies 6
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Dynamic Policy Gradient

Problem Setup

e We wish to optimize the value function over policies 6

e \We parameterize both policy and value function by ANNSs, denoted 6 and ¢

The Lagrangian of the maximization problem is

LIYEN) = Eyrest(s)Po(s'ls) (Vi () = p7(€()
~ A (Eyest(s)Pas'ls) — 1) .

e The Envelope Theorem [MS02], says

Vo ( max ES [‘/t(il(sf+1) —p (f)}) = VeLf’WfJx)

EEU(s, Py (-|st=5))

5, A%
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Dynamic Policy Gradient

Problem Setup

Using an ensemble of ANNs {% }:: V2(s) = V2 (s; 04,0441, ... )

StZS:I

+EE [ (V2(s8h,) = 7(67) = X°) Vo, logn® (af*fs0)

actions

Vgt\/t¢(s) =E [ct(s,af‘)V9t log w0t (af‘|8t)

st:s}.

next states
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Dynamic Policy Gradient

Problem Setup

Using an ensemble of ANNs {%}:: V2(s) = V2 (s; 04,0141, ... )

StZS:I

+EE [ (V2(s8h,) = 7(67) = X°) Vo, logn® (af*fs0)

actions

Vgt\/t¢(s) =E [ct(s,af‘)V9t log w0t (af‘|8t)

st:s}.

next states

Using a single ANN 7?: Vf(s) = Vf’(s; 0)

actions gradient of future V's

st:s}
st:s}.

VaVi?(s) = E [er(s,f) Valogn? (@flse) | st = s| +EE” VoV (sts)

G ES” [ (Vtﬁﬂs?ﬂ) —p" (&) - )‘*) Vo log w? (a?|8t)

next states
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Dynamic Policy Gradient

Algorithm

Actor-critic style algorithm composed of two interleaved procedures:
e Critic calculates the value function given a policy

e Actor updates the policy given a value function

Algorithm 1: Main algorithm - Ensemble Approach

Input: Environment, risk measure, {7}, V?

1 for each periodt =1,...,T do
2 for each epoch k =1,..., K do

3 Generate trajectories with additional transitions for each state ;
4 Estimate the value function (critic) ;

5 Update the policy (actor) ;

Output: An optimal policy 7% ~ 7*

e Simulation upon simulation (or nested simulation) approach

e Function approximation for estimating the policy and value function
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Dynamic Policy Gradient

Estimation of the Value Function

Recall that fors€e Sand t =1,...,T,
V7?+1(5) = cr41(s)

V)= gl +  omax {E Vit - r 0] }

EEU(s,Py(-|st=5))
cost for present state

risk for the next state

¢/ (s): mean of ¢(s,a) over transitions from 7’

Risk measure: risk of VfH for the next states of transitions from 7°
e ANNV? :s;—R
e Expected square loss between predicted and target values

e Mini-batches of states from the generated trajectories

e Adam optimization step to update ¢
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Dynamic Policy Gradient

Update of the Policy

Recall that fors€e Sand t=1,...,T,

actions

Ve, Vt¢(5) =E [Ct(&aft) Vg, log 0t (aft|st)

st:s}

+BE [ (V1605 = 07(67) = A7) Vi logn® (a1

St:S:|.

next states

w0t (aff’|s,, = s): estimated by the reparameterization trick
\/?: obtained using the critic

e ANN 7% : 5 s P(A)

e Computation of Vg, Vt¢

e Mini-batches of states from the generated trajectories

e Stochastic Gradient Descent optimization step to update 0;
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Experiments

Trading Problem

Consider a market with a single asset. An agent:
e invests during T periods, denoted t = 1,...,T
e observes its inventory ¢: € (—@max, gmax) and the price z; € R4
e trades quantities u¢ € (—Umax, Umax) Of the asset

e receives a cost that affects its wealth y; € R

y1 =0
.
Y1 = Y¢ — Teur — Quz, t=1,...,T—1
2 2
YT+1 = YT — TTUT — QUT + qT+1TT+1 — Y741
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Experiments

Trading Problem

Consider a market with a single asset. An agent:
e invests during T periods, denoted t = 1,...,T
e observes its inventory ¢: € (—@max, gmax) and the price z; € R4
e trades quantities u¢ € (—Umax, Umax) Of the asset

e receives a cost that affects its wealth y; € R
y1 =0
Yi+1 :yt—xtut—cé?L?, t=1,...,.T-1

2 2
YT+1 = YT — TTUT — QUT + qT+1TT+1 — Y741

Different risk measures

e Expectation: pr(Z) = E[Z]

o Conditional value-at-risk (CVaR): pcvar(Z; @) = supPgcy(p) {IEIé [Z]}

e Penalized CVaR: pc\/aR.p(Z‘a K) = SUP¢cr4(p) {IE 1+ KZ &(w) log &( )}
where U(P {£ Yo, Ew =1, £€0, 1/04}
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Experime

Optimal policy - Expectation
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Experime

nts

Optimal policy - CVaR
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Experiments

Optimal policy - Penalized CVaR
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Terminal Reward Under Optimal Policy

Distribution of the sum of all rewards
1.0 Mean
CVaR
CVaR-penalized

Density

1.0 15 2.0

-1.0 -05 0.0 0.5
Total reward
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Contributions

A unifying, practical framework for policy gradient with dynamic convex risk measures
e Risk-sensitive optimization with non-stationary policies

e Generalization to the broad class of dynamic convex risk measures

Future directions
e Computationally efficient approach for large-scale problems

o Multi-agent system framework to solve these problems

Deep Deterministic Policy Gradient with dynamic risk measures

Applications on various financial maths problems
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