Reinforcement Learning for Dynamic Convex Risk Measures

Anthony Coache Sebastian Jaimungal

anthonycoache.ca sebastian.statistics.utoronto.ca

Department of Statistical Sciences University of Toronto

SIAM Conference on Financial Mathematics and Engineering \star June 1–4, 2021

Reinforcement Learning (RL)

Markov Decision Process (MDP) $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \pi, P, c, \gamma)$

- S State space
- \mathcal{A} Action space
- $\pi^{\theta}(a|s)$ Policy characterized by θ
- $P(s_1), P(s'|s, a)$ Transition probability distribution
- $c(s,a) \in \mathcal{C}$ State-action dependent cost function
- $\gamma \in (0,1)$ Discount factor

Standard RL: risk-neutral objective function of a cost

 $\min_{\theta} \mathbb{E}\left[Z\right].$

Risk-sensitive RL: *risk measure* ho of the cost Z

 $\min_{\theta} \rho(Z) \quad \text{or} \quad \min_{\theta} \mathbb{E}\left[Z\right] \text{ subj. to } \rho(Z) \leq Z^*.$

Reinforcement Learning (RL)

Markov Decision Process (MDP) $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \pi, P, c, \gamma)$

- S State space
- \mathcal{A} Action space
- $\pi^{\theta}(a|s)$ Policy characterized by θ
- $P(s_1), P(s'|s, a)$ Transition probability distribution
- $c(s,a) \in \mathcal{C}$ State-action dependent cost function
- $\gamma \in (0,1)$ Discount factor

Standard RL: risk-neutral objective function of a cost

 $\min_{\theta} \mathbb{E}\left[Z\right].$

Risk-sensitive RL: *risk measure* ρ of the cost Z

 $\min_{\theta} \rho(Z) \quad \text{or} \quad \min_{\theta} \mathbb{E}\left[Z\right] \text{ subj. to } \rho(Z) \leq Z^*.$

Reinforcement Learning (RL)

Markov Decision Process (MDP) $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \pi, P, c, \gamma)$

- S State space
- \mathcal{A} Action space
- $\pi^{\theta}(a|s)$ Policy characterized by θ
- $P(s_1), P(s'|s, a)$ Transition probability distribution
- $c(s,a) \in \mathcal{C}$ State-action dependent cost function
- $\gamma \in (0,1)$ Discount factor

Standard RL: risk-neutral objective function of a cost

$$\min_{\theta} \mathbb{E}\left[Z\right].$$

Risk-sensitive RL: risk measure ρ of the cost Z

$$\min_{\theta} \rho(Z) \quad \text{or} \quad \min_{\theta} \mathbb{E}\left[Z\right] \text{ subj. to } \rho(Z) \leq Z^*.$$

2/20

Motivation

Risk-aware RL: applying risk measures *recursively* [e.g. Rus10; CZ14], or applying a *static* risk measure [e.g. NBP19; BG20]

- Offers a remedy to environment uncertainty
- Provides strategies that are more *robust*
- Tuned to agent's risk preference

[TCGM15] provide policy search algorithms in both the static and dynamic framework, but some potential shortcomings remain:

- Studies stationary policies
- Restricted to *coherent* risk measures

We develop a generalized, practical setting to solve a wider class of RL problems

- Considers finite-horizon problems and *non-stationary policies*
- Extended to *convex* risk measures

Motivation

Risk-aware RL: applying risk measures *recursively* [e.g. Rus10; CZ14], or applying a *static* risk measure [e.g. NBP19; BG20]

- Offers a remedy to environment uncertainty
- Provides strategies that are more *robust*
- Tuned to agent's risk preference

[TCGM15] provide policy search algorithms in both the static and dynamic framework, but some potential shortcomings remain:

- Studies *stationary policies*
- Restricted to *coherent* risk measures

We develop a generalized, practical setting to solve a wider class of RL problems

- Considers finite-horizon problems and *non-stationary policies*
- Extended to *convex* risk measures

Motivation

Risk-aware RL: applying risk measures *recursively* [e.g. Rus10; CZ14], or applying a *static* risk measure [e.g. NBP19; BG20]

- Offers a remedy to environment uncertainty
- Provides strategies that are more *robust*
- Tuned to agent's risk preference

[TCGM15] provide policy search algorithms in both the static and dynamic framework, but some potential shortcomings remain:

- Studies stationary policies
- Restricted to *coherent* risk measures

We develop a generalized, practical setting to solve a wider class of RL problems

- Considers finite-horizon problems and *non-stationary policies*
- Extended to *convex* risk measures

Risk Measures

 $\rho: \mathcal{Z} \rightarrow \mathbb{R}$ is

- monotone: $Z_1 \leq Z_2$ implies $\rho(Z_1) \leq \rho(Z_2)$
- translation invariant: $\rho(Z+m) = \rho(Z) + m, \ \forall m \in \mathbb{R}$
- positive homogeneous: $\rho(\beta Z) = \beta \rho(Z), \ \forall \beta > 0$
- subadditive: $\rho(Z_1 + Z_2) \le \rho(Z_1) + \rho(Z_2)$
- convex: $\rho(\lambda Z_1 + (1 \lambda)Z_2) \le \lambda \rho(Z_1) + (1 \lambda)\rho(Z_2)$

Coherent ρ [ADEH99]

Monotone, translation invariant, positive homogeneous and subadditive

Convex ρ [FS02]

Monotone, translation invariant and convex

Risk Measures

 $\rho: \mathcal{Z} \rightarrow \mathbb{R}$ is

- monotone: $Z_1 \leq Z_2$ implies $\rho(Z_1) \leq \rho(Z_2)$
- translation invariant: $\rho(Z+m) = \rho(Z) + m, \ \forall m \in \mathbb{R}$
- positive homogeneous: $\rho(\beta Z) = \beta \rho(Z), \ \forall \beta > 0$
- subadditive: $\rho(Z_1 + Z_2) \le \rho(Z_1) + \rho(Z_2)$
- convex: $\rho(\lambda Z_1 + (1 \lambda)Z_2) \le \lambda \rho(Z_1) + (1 \lambda)\rho(Z_2)$

Coherent ρ [ADEH99]

Monotone, translation invariant, positive homogeneous and subadditive

Convex ρ [FS02]

Monotone, translation invariant and convex

Risk Measures

 $\rho: \mathcal{Z} \rightarrow \mathbb{R}$ is

- monotone: $Z_1 \leq Z_2$ implies $\rho(Z_1) \leq \rho(Z_2)$
- translation invariant: $\rho(Z+m) = \rho(Z) + m, \ \forall m \in \mathbb{R}$
- positive homogeneous: $\rho(\beta Z) = \beta \rho(Z), \ \forall \beta > 0$
- subadditive: $\rho(Z_1 + Z_2) \le \rho(Z_1) + \rho(Z_2)$
- convex: $\rho(\lambda Z_1 + (1 \lambda)Z_2) \le \lambda \rho(Z_1) + (1 \lambda)\rho(Z_2)$

Coherent ρ [ADEH99]

Monotone, translation invariant, positive homogeneous and subadditive

Convex ρ [FS02]

Monotone, translation invariant and convex

Dual Representation

Representation Theorem [SDR14]

Let $\mathbb{E}^{\xi}[Z] = \int_{\Omega} Z(\omega)\xi(\omega)dP(\omega)$ and ρ^* be a convex penalty.

If a risk measure ρ is convex, proper and lower semicontinuous, then there exists $\mathcal{U} \subset \left\{\xi : \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \geq 0\right\}$ such that

$$\rho(Z) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Z \right] - \rho^*(\xi) \right\}.$$

Moreover, ρ coherent iff. $\rho(Z) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Z \right] \right\}$

We assume the *risk envelope* ${\mathcal U}$ is of the form [TCGM15]

$$\mathcal{U}(P) = \left\{ \xi : \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \ge 0, \ \underbrace{g_e(\xi, P) = 0, \forall e \in \mathcal{E}}_{\text{affine fcts w.r.t. } \xi}, \ \underbrace{f_i(\xi, P) \le 0, \forall i \in \mathcal{I}}_{\text{convex fcts w.r.t. } \xi} \right\}$$

Dual Representation

Representation Theorem [SDR14]

Let $\mathbb{E}^{\xi}[Z] = \int_{\Omega} Z(\omega)\xi(\omega)dP(\omega)$ and ρ^* be a convex penalty.

If a risk measure ρ is convex, proper and lower semicontinuous, then there exists $\mathcal{U} \subset \left\{\xi : \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \geq 0\right\}$ such that

$$\rho(Z) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Z \right] - \rho^*(\xi) \right\}.$$

Moreover, ρ coherent iff. $\rho(Z) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Z \right] \right\}$

We assume the *risk envelope* U is of the form [TCGM15]

$$\mathcal{U}(P) = \left\{ \xi : \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \ge 0, \ \underbrace{g_e(\xi, P) = 0, \forall e \in \mathcal{E}}_{\text{affine fcts w.r.t. } \xi}, \ \underbrace{f_i(\xi, P) \le 0, \forall i \in \mathcal{I}}_{\text{convex fcts w.r.t. } \xi} \right\}$$

Consider

- (Ω, \mathcal{F}, P) Probability space
- $\mathcal{F}_1 \subset \ldots \subset \mathcal{F}_T$ Filtration
- $\mathcal{Z}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P) p$ -integrable random variables
- $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \mathcal{Z}_T$

Dynamic risk measure $\{\rho_{t,T}\}_t$

Sequence of $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ where $\rho_{t,T}(Z) \leq \rho_{t,T}(W), \ \forall Z \leq W$

Time-consistency [Rus10]

 $\{\rho_{t,T}\}_t$ is *time-consistent* iff. for any $1 \le t_1 < t_2 \le T$, and any $Z, W \in \mathcal{Z}_{t_1,T}$, we have

 $\rho_{t_2,T}(Z_{t_2},\ldots,Z_T) \le \rho_{t_2,T}(W_{t_2},\ldots,W_T) \text{ and } Z_k = W_k, \forall k = t_1,\ldots,t_2$

implies that $\rho_{t_1,T}(Z_{t_1},...,Z_T) \leq \rho_{t_1,T}(W_{t_1},...,W_T).$

Consider

- (Ω, \mathcal{F}, P) Probability space
- $\mathcal{F}_1 \subset \ldots \subset \mathcal{F}_T$ Filtration
- $\mathcal{Z}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P) p$ -integrable random variables
- $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \mathcal{Z}_T$

Dynamic risk measure $\{\rho_{t,T}\}_t$

Sequence of $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ where $\rho_{t,T}(Z) \leq \rho_{t,T}(W), \ \forall Z \leq W$

Time-consistency [Rus10]

 $\{\rho_{t,T}\}_t$ is *time-consistent* iff. for any $1 \le t_1 < t_2 \le T$, and any $Z, W \in \mathcal{Z}_{t_1,T}$, we have

$$\rho_{t_2,T}(Z_{t_2},\ldots,Z_T) \le \rho_{t_2,T}(W_{t_2},\ldots,W_T) \text{ and } Z_k = W_k, \, \forall k = t_1,\ldots,t_2$$

implies that $\rho_{t_1,T}(Z_{t_1},...,Z_T) \le \rho_{t_1,T}(W_{t_1},...,W_T).$

One-step conditional risk measure ρ_t

Risk measure $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ such that $\rho_t(Z_{t+1}) = \rho_{t,t+1}(0, Z_{t+1})$.

Suppose a time-consistent $\{\rho_{t,T}\}_t$ satisfies

- $\rho_{t,T}(Z_t, Z_{t+1}, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T)$
- $\rho_{t,T}(0) = 0$
- $\rho_{t_1,t_2}(\mathbf{1}_A Z) = \mathbf{1}_A \rho_{t_1,t_2}(Z), \, \forall A \in \mathcal{F}_{t_1}$

Then [Rus10] we have

 $\rho_{t,T}(Z_t, \dots, Z_T) = Z_t + \rho_t \left(Z_{t+1} + \rho_{t+1} \left(Z_{t+2} + \dots + \rho_T \left(Z_T \right) \cdots \right) \right)$

Additional assumed properties for ρ_t :

- Axioms of convex risk measures
- Markovian, i.e. not allowed to depend on the whole past

One-step conditional risk measure ρ_t

Risk measure $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$ such that $\rho_t(Z_{t+1}) = \rho_{t,t+1}(0, Z_{t+1})$.

Suppose a time-consistent $\{\rho_{t,T}\}_t$ satisfies

- $\rho_{t,T}(Z_t, Z_{t+1}, \dots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T)$
- $\rho_{t,T}(0) = 0$

•
$$\rho_{t_1,t_2}(\mathbf{1}_A Z) = \mathbf{1}_A \rho_{t_1,t_2}(Z), \, \forall A \in \mathcal{F}_{t_1}$$

Then [Rus10] we have

$$\rho_{t,T}(Z_t, \dots, Z_T) = Z_t + \rho_t \left(Z_{t+1} + \rho_{t+1} \left(Z_{t+2} + \dots + \rho_T \left(Z_T \right) \cdots \right) \right)$$

Additional assumed properties for ρ_t :

- Axioms of convex risk measures
- Markovian, i.e. not allowed to depend on the whole past

Problems of the form $\min_{\theta} \rho_{1,T+1}(Z)$ induced by π^{θ} , i.e. $\min_{\theta} c(s_1, a_1) + \gamma \rho_1 \left(c(s_2, a_2) + \dots + \gamma \rho_{T-1} \left(c(s_T, a_T) + \gamma \rho_T \left(c(s_{T+1}) \right) \dots \right) \right)$

Using the dual representation and recursive equations, we have

$$V_{T+1}(s) = c_{T+1}(s),$$

$$V_t(s) = \underbrace{c_t^{\theta}(s)}_{\text{cost for present state}} + \underbrace{\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot | s_t = s))} \mathbb{E}^{\xi} \left[V_{t+1}(s_{t+1}^{\theta}) - \rho^*(\xi) \right]}_{\text{risk for next state}},$$

for $s \in \mathcal{S}$ and $t = T, \ldots, 1$, where

•
$$c_t^{\theta}(s) = \sum_a c_t(s, a) \pi^{\theta}(a|s_t = s)$$
 – Cost of π^{θ}

• $P_{\theta}(s'|s_t = s) = \sum_a P(s'|s, a) \pi^{\theta}(a|s_t = s)$ – Transition probability induced by π^{θ}

Problems of the form $\min_{\theta} \rho_{1,T+1}(Z)$ induced by π^{θ} , i.e.

$$\min_{\theta} c(s_1, a_1) + \gamma \rho_1 \left(c(s_2, a_2) + \dots + \gamma \rho_{T-1} \left(c(s_T, a_T) + \gamma \rho_T \left(c(s_{T+1}) \right) \cdots \right) \right)$$

Using the dual representation and recursive equations, we have

$$V_{T+1}(s) = c_{T+1}(s),$$

$$V_t(s) = \underbrace{c_t^{\theta}(s)}_{\text{cost for present state}} + \underbrace{\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot | s_t = s))} \mathbb{E}^{\xi} \left[V_{t+1}(s_{t+1}^{\theta}) - \rho^*(\xi) \right]}_{\text{risk for next state}},$$

for $s \in \mathcal{S}$ and $t = T, \ldots, 1$, where

•
$$c_t^{\theta}(s) = \sum_a c_t(s, a) \pi^{\theta}(a|s_t = s)$$
 – Cost of π^{θ}

• $P_{\theta}(s'|s_t = s) = \sum_a P(s'|s, a) \pi^{\theta}(a|s_t = s)$ – Transition probability induced by π^{θ}

- We wish to optimize the value function over policies θ
- We parameterize both policy and value function by ANNs, denoted heta and ϕ
- The Lagrangian of the maximization problem is

$$L_t^{\theta,\phi}(\xi,\lambda) = \sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) \left(V_{t+1}^{\phi}(s') - \rho^*(\xi(s')) \right) \\ - \lambda \left(\sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) - 1 \right).$$

$$\nabla_{\theta} \left(\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot|s_t=s))} \mathbb{E}^{\xi} \left[V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^*(\xi) \right] \right) = \nabla_{\theta} L_t^{\theta, \phi}(\xi, \lambda) \Big|_{\xi^*, \lambda^*}$$

- We wish to optimize the value function over policies $\boldsymbol{\theta}$
- We parameterize both policy and value function by ANNs, denoted θ and ϕ
- The Lagrangian of the maximization problem is

$$L_{t}^{\theta,\phi}(\xi,\lambda) = \sum_{s'\in\mathcal{S}}\xi(s')P_{\theta}(s'|s) \left(V_{t+1}^{\phi}(s') - \rho^{*}(\xi(s'))\right) \\ -\lambda \left(\sum_{s'\in\mathcal{S}}\xi(s')P_{\theta}(s'|s) - 1\right).$$

$$\nabla_{\theta} \left(\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot|s_t=s))} \mathbb{E}^{\xi} \left[V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^*(\xi) \right] \right) = \nabla_{\theta} L_t^{\theta, \phi}(\xi, \lambda) \Big|_{\xi^*, \lambda^*}$$

- We wish to optimize the value function over policies $\boldsymbol{\theta}$
- We parameterize both policy and value function by ANNs, denoted heta and ϕ
- The Lagrangian of the *maximization problem* is

$$\begin{split} L_t^{\theta,\phi}(\xi,\lambda) &= \sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) \left(V_{t+1}^{\phi}(s') - \rho^*(\xi(s')) \right) \\ &- \lambda \left(\sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) - 1 \right). \end{split}$$

$$\nabla_{\theta} \left(\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot|s_t=s))} \mathbb{E}^{\xi} \left[V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^*(\xi) \right] \right) = \nabla_{\theta} L_t^{\theta, \phi}(\xi, \lambda) \Big|_{\xi^*, \lambda^*}$$

- We wish to optimize the value function over policies $\boldsymbol{\theta}$
- We parameterize both policy and value function by ANNs, denoted heta and ϕ
- The Lagrangian of the maximization problem is

$$\begin{split} L_t^{\theta,\phi}(\xi,\lambda) &= \sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) \left(V_{t+1}^{\phi}(s') - \rho^*(\xi(s')) \right) \\ &- \lambda \left(\sum_{s'\in\mathcal{S}} \xi(s') P_{\theta}(s'|s) - 1 \right). \end{split}$$

$$\nabla_{\theta} \left(\max_{\xi \in \mathcal{U}(s, P_{\theta}(\cdot|s_t=s))} \mathbb{E}^{\xi} \left[V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^*(\xi) \right] \right) = \nabla_{\theta} L_t^{\theta, \phi}(\xi, \lambda) \Big|_{\xi^*, \lambda^*}$$

Using an ensemble of ANNs $\{\pi^{\theta_t}\}_t$: $V_t^{\phi}(s) = V_t^{\phi}(s; \theta_t, \theta_{t+1}, \dots)$

$$\nabla_{\theta_t} V_t^{\phi}(s) = \underbrace{\mathbb{E}\left[c_t(s, a_t^{\theta_t}) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\substack{+ \\ \mathbb{E}^{\xi^*}\left[\left(V_t^{\phi}(s_{t+1}^{\theta_t}) - \rho^*(\xi^*) - \lambda^*\right) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\substack{\text{next states}}}.$$

Using a single ANN π^{θ} : $V^{\phi}_t(s) = V^{\phi}_t(s; \theta)$

$$\nabla_{\theta} V_{t}^{\phi}(s) = \underbrace{\mathbb{E}\left[c_{t}(s, a_{t}^{\theta}) \nabla_{\theta} \log \pi^{\theta}(a_{t}^{\theta}|s_{t}) \mid s_{t} = s\right]}_{\text{rest states}} + \underbrace{\mathbb{E}^{\xi^{*}}\left[\nabla_{\theta} V_{t+1}^{\phi}(s_{t+1}^{\theta}) \mid s_{t} = s\right]}_{\text{rest states}} + \underbrace{\mathbb{E}^{\xi^{*}}\left[\left(V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^{*}(\xi^{*}) - \lambda^{*}\right) \nabla_{\theta} \log \pi^{\theta}(a_{t}^{\theta}|s_{t}) \mid s_{t} = s\right]}_{\text{rest states}}.$$

Using an ensemble of ANNs $\{\pi^{\theta_t}\}_t$: $V_t^{\phi}(s) = V_t^{\phi}(s; \theta_t, \theta_{t+1}, \dots)$

$$\nabla_{\theta_t} V_t^{\phi}(s) = \underbrace{\mathbb{E}\left[c_t(s, a_t^{\theta_t}) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\mathsf{P} \in \mathbb{E}^{\xi^*}\left[\left(V_t^{\phi}(s_{t+1}^{\theta_t}) - \rho^*(\xi^*) - \lambda^*\right) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\mathsf{next states}}.$$

Using a single ANN $\pi^{\theta} \colon V_t^{\phi}(s) = V_t^{\phi}(s;\theta)$

$$\nabla_{\theta} V_{t}^{\phi}(s) = \underbrace{\mathbb{E}\left[c_{t}(s, a_{t}^{\theta}) \nabla_{\theta} \log \pi^{\theta}(a_{t}^{\theta}|s_{t}) \middle| s_{t} = s\right]}_{\substack{\mathsf{E}^{\xi^{*}}\left[\nabla_{\theta} V_{t+1}^{\phi}(s_{t+1}^{\theta}) \middle| s_{t} = s\right]}}_{\substack{\mathsf{E}^{\xi^{*}}\left[\left(V_{t+1}^{\phi}(s_{t+1}^{\theta}) - \rho^{*}(\xi^{*}) - \lambda^{*}\right)\nabla_{\theta} \log \pi^{\theta}(a_{t}^{\theta}|s_{t}) \middle| s_{t} = s\right]}_{\substack{\mathsf{P} \in \mathsf{T} \text{ states}}}.$$

10/20

Algorithm

2

3

5

Actor-critic style algorithm composed of two interleaved procedures:

- Critic calculates the value function given a policy
- Actor updates the policy given a value function

Algorithm 1: Main algorithm - Ensemble Approach

Input: Environment, risk measure, $\{\pi^{\theta_t}\}_t$, V^{ϕ}

1 for each period $t = 1, \ldots, T$ do

for each epoch $\kappa = 1, \ldots, K$ do

Generate trajectories with additional transitions for each state ;

4 Estimate the value function (*critic*) ;

Update the policy (*actor*) ;

Output: An optimal policy $\pi^{\theta} \approx \pi^{*}$

- Simulation upon simulation (or nested simulation) approach
- Function approximation for estimating the policy and value function

Estimation of the Value Function

 $c^{ heta}_t(s)$: mean of $c_t(s,a)$ over transitions from $\pi^{ heta}$

Risk measure: risk of V_{t+1}^{ϕ} for the next states of transitions from π^{θ}

- ANN $V_t^{\phi}: s_t \mapsto \mathbb{R}$
- Expected square loss between predicted and target values
- Mini-batches of states from the generated trajectories
- Adam optimization step to update $\boldsymbol{\phi}$

Update of the Policy

Recall that for $s \in \mathcal{S}$ and $t = 1, \ldots, T$,

$$\nabla_{\theta_t} V_t^{\phi}(s) = \underbrace{\mathbb{E}\left[c_t(s, a_t^{\theta_t}) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\mathsf{h} \in \mathbb{E}^{\ast} \left[\left(\frac{V_{t+1}^{\phi}(s_{t+1}^{\theta_t}) - \rho^{\ast}(\xi^{\ast}) - \lambda^{\ast}\right) \nabla_{\theta_t} \log \pi^{\theta_t}(a_t^{\theta_t} | s_t) \mid s_t = s\right]}_{\mathsf{next states}}$$

 $\pi^{\theta_t}(a_t^{\theta_t}|s_t=s):$ estimated by the reparameterization trick

 V^{ϕ} : obtained using the critic

- ANN $\pi^{\theta_t} : s_t \mapsto \mathcal{P}(\mathcal{A})$
- Computation of $\nabla_{\theta_t} V_t^{\phi}$
- Mini-batches of states from the generated trajectories
- Stochastic Gradient Descent optimization step to update θ_t

Trading Problem

Consider a market with a single asset. An agent:

- invests during T periods, denoted $t=1,\ldots,T$
- observes its inventory $q_t \in (-q_{\max}, q_{\max})$ and the price $x_t \in \mathbb{R}_+$
- trades quantities $u_t \in (-u_{\max}, u_{\max})$ of the asset
- receives a cost that affects its wealth $y_t \in \mathbb{R}$

$$\begin{cases} y_1 = 0\\ y_{t+1} = y_t - x_t u_t - \phi u_t^2, \quad t = 1, \dots, T - 1\\ y_{T+1} = y_T - x_T u_T - \phi u_T^2 + q_{T+1} x_{T+1} - \psi q_{T+1}^2 \end{cases}$$

Different risk measures

- Expectation: $\rho_{\mathbb{E}}(Z) = \mathbb{E}[Z]$
- Conditional value-at-risk (CVaR): $\rho_{\text{CVaR}}(Z; \alpha) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi}[Z] \right\}$
- Penalized CVaR: $\rho_{\text{CVaR-p}}(Z; \alpha, \kappa) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi}[Z] + \kappa \sum_{\omega} \xi(\omega) \log \xi(\omega) \right\}$

where $\mathcal{U}(P) = \left\{\xi: \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \in [0, 1/\alpha] \right\}$

Trading Problem

Consider a market with a single asset. An agent:

- invests during T periods, denoted $t=1,\ldots,T$
- observes its inventory $q_t \in (-q_{\max}, q_{\max})$ and the price $x_t \in \mathbb{R}_+$
- trades quantities $u_t \in (-u_{\max}, u_{\max})$ of the asset
- receives a cost that affects its wealth $y_t \in \mathbb{R}$

$$\begin{cases} y_1 = 0\\ y_{t+1} = y_t - x_t u_t - \phi u_t^2, \quad t = 1, \dots, T - 1\\ y_{T+1} = y_T - x_T u_T - \phi u_T^2 + q_{T+1} x_{T+1} - \psi q_{T+1}^2 \end{cases}$$

Different risk measures

- Expectation: $\rho_{\mathbb{E}}(Z) = \mathbb{E}[Z]$
- Conditional value-at-risk (CVaR): $\rho_{\text{CVaR}}(Z; \alpha) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi}[Z] \right\}$
- Penalized CVaR: $\rho_{\text{CVaR-p}}(Z; \alpha, \kappa) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Z \right] + \kappa \sum_{\omega} \xi(\omega) \log \xi(\omega) \right\}$

where $\mathcal{U}(P) = \left\{\xi: \sum_{\omega}\xi(\omega)P(\omega) = 1, \; \xi \in [0,1/\alpha]\right\}$

14 / 20

Optimal policy - Expectation

Optimal policy - CVaR

Optimal policy - Penalized CVaR

Terminal Reward Under Optimal Policy

A unifying, practical framework for policy gradient with dynamic convex risk measures

- Risk-sensitive optimization with non-stationary policies
- Generalization to the broad class of *dynamic convex risk measures*

Future directions

- Computationally efficient approach for large-scale problems
- Multi-agent system framework to solve these problems
- Deep Deterministic Policy Gradient with dynamic risk measures
- Applications on various financial maths problems

Thank you!

- [ADEH99] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. *Mathematical finance*, 9(3):203–228, 1999.
 - [BG20] Nicole Bäuerle and Alexander Glauner. Minimizing spectral risk measures applied to markov decision processes. *arXiv preprint arXiv:2012.04521*, 2020.
 - [CZ14] Shanyun Chu and Yi Zhang. Markov decision processes with iterated coherent risk measures. International Journal of Control, 87(11):2286–2293, 2014.
 - [FS02] Hans Föllmer and Alexander Schied. Convex measures of risk and trading constraints. Finance and stochastics, 6(4):429–447, 2002.
 - [MS02] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583–601, 2002.
 - [NBP19] David Nass, Boris Belousov, and Jan Peters. Entropic risk measure in policy search. arXiv preprint arXiv:1906.09090, 2019.
 - [Rus10] Andrzej Ruszczyński. Risk-averse dynamic programming for markov decision processes. Mathematical programming, 125(2):235–261, 2010.
 - [SDR14] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic programming: modeling and theory. SIAM, 2014.
- [TCGM15] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for coherent risk measures. Advances in Neural Information Processing Systems, 28:1468–1476, 2015.