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Background

Reinforcement Learning (RL)
Markov Decision Process (MDP) M := (S,A, π, P, c, γ)

• S – State space
• A – Action space
• πθ(a|s) – Policy characterized by θ
• P (s1), P (s′|s, a) – Transition probability distribution
• c(s, a) ∈ C – State-action dependent cost function
• γ ∈ (0, 1) – Discount factor

Standard RL: risk-neutral objective function of a cost

min
θ

E [Z] .

Risk-sensitive RL: risk measure ρ of the cost Z

min
θ

ρ(Z) or min
θ

E [Z] subj. to ρ(Z) ≤ Z∗.
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Background

Motivation

Risk-aware RL: applying risk measures recursively [e.g. Rus10; CZ14], or applying a
static risk measure [e.g. NBP19; BG20]
• Offers a remedy to environment uncertainty
• Provides strategies that are more robust
• Tuned to agent’s risk preference

[TCGM15] provide policy search algorithms in both the static and dynamic framework,
but some potential shortcomings remain:
• Studies stationary policies

• Restricted to coherent risk measures

We develop a generalized, practical setting to solve a wider class of RL problems
• Considers finite-horizon problems and non-stationary policies

• Extended to convex risk measures
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Background

Risk Measures

ρ : Z → R is
• monotone: Z1 ≤ Z2 implies ρ(Z1) ≤ ρ(Z2)

• translation invariant: ρ(Z +m) = ρ(Z) +m, ∀m ∈ R

• positive homogeneous: ρ(βZ) = βρ(Z), ∀β > 0

• subadditive: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2)

• convex: ρ(λZ1 + (1− λ)Z2) ≤ λρ(Z1) + (1− λ)ρ(Z2)

Coherent ρ [ADEH99]
Monotone, translation invariant, positive homogeneous and subadditive

Convex ρ [FS02]
Monotone, translation invariant and convex
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Background

Dual Representation

Representation Theorem [SDR14]
Let Eξ[Z] =

∫
Ω Z(ω)ξ(ω)dP (ω) and ρ∗ be a convex penalty.

If a risk measure ρ is convex, proper and lower semicontinuous, then there exists
U ⊂

{
ξ :
∑

ω
ξ(ω)P (ω) = 1, ξ ≥ 0

}
such that

ρ(Z) = sup
ξ∈U(P )

{
Eξ [Z]− ρ∗(ξ)

}
.

Moreover, ρ coherent iff. ρ(Z) = supξ∈U(P )
{
Eξ [Z]

}
We assume the risk envelope U is of the form [TCGM15]

U(P ) =

ξ :
∑
ω

ξ(ω)P (ω) = 1, ξ ≥ 0, ge(ξ, P ) = 0, ∀e ∈ E ,︸ ︷︷ ︸
affine fcts w.r.t. ξ

fi(ξ, P ) ≤ 0, ∀i ∈ I︸ ︷︷ ︸
convex fcts w.r.t. ξ


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Background

Dynamic Risk Measures
Consider
• (Ω,F , P ) – Probability space
• F1 ⊂ . . . ⊂ FT – Filtration
• Zt = Lp(Ω,Ft, P ) – p-integrable random variables
• Zt,T = Zt × · · · ZT

Dynamic risk measure {ρt,T }t

Sequence of ρt,T : Zt,T → Zt where ρt,T (Z) ≤ ρt,T (W ), ∀Z ≤W

Time-consistency [Rus10]
{ρt,T }t is time-consistent iff. for any 1 ≤ t1 < t2 ≤ T , and any Z,W ∈ Zt1,T , we have

ρt2,T (Zt2 , . . . , ZT ) ≤ ρt2,T (Wt2 , . . . ,WT ) and Zk = Wk, ∀k = t1, . . . , t2

implies that ρt1,T (Zt1 , . . . , ZT ) ≤ ρt1,T (Wt1 , . . . ,WT ).
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Background

Dynamic Risk Measures

One-step conditional risk measure ρt

Risk measure ρt : Zt+1 → Zt such that ρt(Zt+1) = ρt,t+1(0, Zt+1).

Suppose a time-consistent {ρt,T }t satisfies
• ρt,T (Zt, Zt+1, . . . , ZT ) = Zt + ρt,T (0, Zt+1, . . . , ZT )
• ρt,T (0) = 0
• ρt1,t2 (1AZ) = 1Aρt1,t2 (Z), ∀A ∈ Ft1

Then [Rus10] we have

ρt,T (Zt, . . . , ZT ) = Zt + ρt (Zt+1 + ρt+1 (Zt+2 + · · ·+ ρT (ZT ) · · · ))

Additional assumed properties for ρt:
• Axioms of convex risk measures
• Markovian, i.e. not allowed to depend on the whole past
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Dynamic Policy Gradient

Problem Setup

Problems of the form minθ ρ1,T+1(Z) induced by πθ, i.e.

min
θ

c(s1, a1) + γρ1 (c(s2, a2) + · · ·+ γρT−1 (c(sT , aT ) + γρT (c(sT+1)) · · · ))

Using the dual representation and recursive equations, we have

VT+1(s) = cT+1(s),

Vt(s) = cθt (s)︸ ︷︷ ︸
cost for present state

+ max
ξ∈U(s,Pθ(·|st=s))

Eξ
[
Vt+1(sθt+1)− ρ∗(ξ)

]
︸ ︷︷ ︸

risk for next state

,

for s ∈ S and t = T, . . . , 1, where
• cθt (s) =

∑
a
ct(s, a)πθ(a|st = s) – Cost of πθ

• Pθ(s′|st = s) =
∑

a
P (s′|s, a)πθ(a|st = s) – Transition probability induced by πθ
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Dynamic Policy Gradient

Problem Setup

• We wish to optimize the value function over policies θ

• We parameterize both policy and value function by ANNs, denoted θ and φ

• The Lagrangian of the maximization problem is

Lθ,φt (ξ, λ) =
∑

s′∈Sξ(s
′)Pθ(s′|s)

(
V φt+1(s′) − ρ∗(ξ(s′))

)
− λ

(∑
s′∈Sξ(s

′)Pθ(s′|s)− 1
)
.

• The Envelope Theorem [MS02], says

∇θ
(

max
ξ∈U(s,Pθ(·|st=s))

Eξ
[
V φt+1(sθt+1)− ρ∗(ξ)

])
= ∇θLθ,φt (ξ, λ)

∣∣∣
ξ∗,λ∗
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Dynamic Policy Gradient

Problem Setup
Using an ensemble of ANNs {πθt}t: V φt (s) = V φt (s; θt, θt+1, . . . )

∇θtV
φ
t (s) =

actions︷ ︸︸ ︷
E
[
ct(s, aθtt )∇θt log πθt (aθtt |st)

∣∣∣ st = s

]
+ Eξ

∗
[ (
V φt (sθtt+1)− ρ∗(ξ∗)− λ∗

)
∇θt log πθt (aθtt |st)

∣∣∣ st = s

]
︸ ︷︷ ︸

next states

.

Using a single ANN πθ: V φt (s) = V φt (s; θ)

∇θV φt (s) =

actions︷ ︸︸ ︷
E
[
ct(s, aθt ) ∇θ log πθ(aθt |st)

∣∣∣ st = s

]
+

gradient of future V ’s︷ ︸︸ ︷
Eξ
∗
[
∇θV φt+1(sθt+1)

∣∣∣ st = s

]
+ Eξ

∗
[ (
V φt+1(sθt+1)− ρ∗(ξ∗)− λ∗

)
∇θ log πθ(aθt |st)

∣∣∣ st = s

]
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next states

.
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Dynamic Policy Gradient

Algorithm

Actor-critic style algorithm composed of two interleaved procedures:
• Critic calculates the value function given a policy
• Actor updates the policy given a value function

Algorithm 1: Main algorithm - Ensemble Approach
Input: Environment, risk measure, {πθt}t, V φ

1 for each period t = 1, . . . , T do
2 for each epoch κ = 1, . . . ,K do
3 Generate trajectories with additional transitions for each state ;
4 Estimate the value function (critic) ;
5 Update the policy (actor) ;

Output: An optimal policy πθ ≈ π∗

• Simulation upon simulation (or nested simulation) approach
• Function approximation for estimating the policy and value function
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Dynamic Policy Gradient

Estimation of the Value Function

Recall that for s ∈ S and t = 1, . . . , T ,

V φT+1(s) = cT+1(s)

V φt (s) = cθt (s)︸︷︷︸
cost for present state

+ max
ξ∈U(s,Pθ(·|st=s))

{
Eξ
[
V φt+1(sθt+1)− ρ∗(ξ)

]}
︸ ︷︷ ︸

risk for the next state

cθt (s): mean of ct(s, a) over transitions from πθ

Risk measure: risk of V φt+1 for the next states of transitions from πθ

• ANN V φt : st 7→ R
• Expected square loss between predicted and target values
• Mini-batches of states from the generated trajectories
• Adam optimization step to update φ

12 / 20



Dynamic Policy Gradient

Update of the Policy

Recall that for s ∈ S and t = 1, . . . , T ,

∇θtV
φ
t (s) =

actions︷ ︸︸ ︷
E
[
ct(s, aθtt ) ∇θt log πθt (aθtt |st)

∣∣∣ st = s

]
+ Eξ

∗
[ (
V φt+1(sθtt+1)− ρ∗(ξ∗)− λ∗

)
∇θt log πθt (aθtt |st)

∣∣∣ st = s

]
︸ ︷︷ ︸

next states

.

πθt (aθtt |st = s): estimated by the reparameterization trick

V φ: obtained using the critic

• ANN πθt : st 7→ P(A)

• Computation of ∇θtV
φ
t

• Mini-batches of states from the generated trajectories
• Stochastic Gradient Descent optimization step to update θt

13 / 20



Experiments

Trading Problem
Consider a market with a single asset. An agent:
• invests during T periods, denoted t = 1, . . . , T
• observes its inventory qt ∈ (−qmax, qmax) and the price xt ∈ R+

• trades quantities ut ∈ (−umax, umax) of the asset
• receives a cost that affects its wealth yt ∈ R

y1 = 0
yt+1 = yt − xtut − φu2

t , t = 1, . . . , T − 1
yT+1 = yT − xTuT − φu2

T + qT+1xT+1 − ψq2
T+1

.

Different risk measures
• Expectation: ρE(Z) = E[Z]
• Conditional value-at-risk (CVaR): ρCVaR(Z;α) = supξ∈U(P )

{
Eξ [Z]

}
• Penalized CVaR: ρCVaR-p(Z;α, κ) = supξ∈U(P )

{
Eξ [Z] + κ

∑
ω
ξ(ω) log ξ(ω)

}
where U(P ) =

{
ξ :
∑

ω
ξ(ω)P (ω) = 1, ξ ∈ [0, 1/α]

}
14 / 20
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Experiments

Optimal policy - Expectation
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Experiments

Optimal policy - CVaR
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Experiments

Optimal policy - Penalized CVaR
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Experiments

Terminal Reward Under Optimal Policy
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Contributions

A unifying, practical framework for policy gradient with dynamic convex risk measures
• Risk-sensitive optimization with non-stationary policies
• Generalization to the broad class of dynamic convex risk measures

Future directions
• Computationally efficient approach for large-scale problems
• Multi-agent system framework to solve these problems
• Deep Deterministic Policy Gradient with dynamic risk measures
• Applications on various financial maths problems
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